skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ulak, Mehmet Baran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transportation systems are vulnerable to hurricanes and yet their recovery plays a critical role in returning a community to its pre-hurricane state. Vegetative debris is among the most significant causes of disruptions on transportation infrastructure. Therefore, identifying the driving factors of hurricane-caused debris generation can help clear roadways faster and improve the recovery time of infrastructure systems. Previous studies on hurricane debris assessment are generally based on field data collection, which is expensive, time consuming, and dangerous. With the availability and convenience of remote sensing powered by the simple yet accurate estimations on the vigor of vegetation or density of manufactured features, spectral indices can change the way that emergency planners prepare for and perform vegetative debris removal operations. Thus, this study proposes a data fusion framework combining multispectral satellite imagery and various vector data to evaluate post-hurricane vegetative debris with an exploratory analysis in small geographical units. Actual debris removal data were obtained from the City of Tallahassee, Florida after Hurricane Michael (2018) and aggregated into U.S. Census Block Groups along with four groups of datasets representing vegetation, storm surge, land use, and socioeconomics. Findings suggest that vegetation and other land characteristics are more determinant factors on debris generation, and Modified Soil-Adjusted Vegetation Index (MSAVI2) outperforms other vegetation indices for hurricane debris assessment. The proposed framework can help better identify equipment stack locations and temporary debris collection centers while providing resilience enhancements with a focus on the transportation infrastructure. 
    more » « less
  2. null (Ed.)
  3. Hurricanes lead to substantial infrastructure system damages, such as roadway closures and power outages, in the US annually, especially in states like Florida. As such, this paper aimed to assess the impacts of Hurricane Hermine (2016) and Hurricane Michael (2018) on the City of Tallahassee, the capital of Florida, via exploratory spatial and statistical analyses on power outages and roadway closures. First, a geographical information systems (GIS)-based spatial analysis was conducted to explore the power outages and roadway closure patterns in the city including kernel density estimation (KDE) and density ratio difference (DRD) methods. In order to provide a more detailed assessment on which population segments were more affected, a second step included a statistical analysis to identify the relationships between demographic- and socioeconomic-related variables and the magnitude of power outages and roadway closures caused by these hurricanes. The results indicate that the high-risk locations for roadway closures showed different patterns, whereas power outages seemed to have similar spatial patterns for the hurricanes. The findings of this study can provide useful insights and information for city officials to identify the most vulnerable regions which are under the risk of disruption. This can lead to better infrastructure plans and policies. 
    more » « less
  4. Urban resilience is a multifaceted concept including the recovery of the physical infrastructure and various urban activities that depend on that physical infrastructure. It is relatively straightforward to quantify infrastructure resilience by tracking the recovered facilities in time and marking the time that the infrastructure is fully functioning again. However, the physical infrastructure recovery does not necessarily indicate that the urban activities bounce back to the predisaster conditions. The restoration of urban activities depends on the areas that a particular infrastructure serves (e.g., residential, commercial) and the connections with other critical facilities (e.g., health, education). It is important to investigate the infrastructure recovery and “resilience divide” with respect to the enabled services and affected populations in order to achieve all-inclusive resilience. For this purpose, we examined the resilience of different physical elements such as power feeders (i.e., underground or overhead lines), critical facilities (e.g., fire and rescue services, hospitals) and different socio-demographic segments of the population (i.e., different age groups, ethnicities, and income levels) which constitute an urban environment. The analyses were conducted using the power outages experienced after Hurricane Hermine in Tallahassee, as a case study. The findings show that overall resilience performance can be distinct and/or not homogeneous for the resilience of different physical elements, urban services, and population groups. 
    more » « less
  5. Florida's emergency relief operations were significantly affected by recent hurricanes such as Hermine and Irma that caused massive roadway and power system distributions. During these recent devastating hurricanes, the problems associated with providing accessibility and safety became even more challenging, especially for those vulnerable communities and disadvantaged segments of the society, such as aging populations were considered - that is, those who need and benefit from the emergency services the most. This complexity is magnified in states like Florida, considering the diverse physical, cognitive, economic and demographic variation of its population. As such, with a major focus on real-life data on roadway closures and power outages for the Hurricane Hermine, combined resilience (co-resilience) of emergency response facilities in the City of Tallahassee, the capital of Florida, was extensively studied based on the (a) temporal reconstruction of the reported power outages and roadway closures, and (b) development of co-resilience metrics to identify and visually map the most affected power system feeders and transportation network locations. Results show those regions with reduced emergency response facility accessibility, and those power lines and roadways under a disruption risk after Hermine hit Tallahassee. 
    more » « less